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Perturbed Characteristic Functions. III 

H. A. Buchdahl  1'2 

Received November 2, 1989 

As an improvement on earlier work, it is shown how perturbations of characteris- 
tic functions can be obtained by a recursive procedure which avoids the necessity 
to find the perturbation of the extremal joining given terminal points, that is, 
all integrations now go along unperturbed extremals. For the sake of brevity, 
only the important case of the world characteristic is dealt with here. 

1. I N T R O D U C T I O N  

In an earlier paper  (Buchdahl, 1985), hereafter referred to as II ,  I 
considered the first- and second-order perturbations of  characteristic func- 
tions. What is to be understood by this is adequately set out in the Introduc- 
tion to II. A generic expression for the total perturbation A V of  V is given 
by equation (II.11), and this was the starting point for the determination 
of  V <1) and V <2). (Except where otherwise indicated, the notation of  II  is 
retained here.) The trouble with this procedure is that the integrations which 
are part  of  it go along perturbed extremals. Thus, granted that everything 
required for the determination of V ~r-1) is already known, to find V <r), one 
must first find the q(r_l)(U), ]s 1 , . . . ,  n. While these are implicit in V <r-l), 
already known, one is confronted, for all but the smallest values of  r, with 
very tedious calculations. It is therefore desirable to find a procedure which 
avoids these vexatious complications. 

To this end, a different starting point is adopted here, namely the 
Hamil ton-Jacobi  equations satisfied by V, one at each endpoint. Rather 
than consider the most general case, I confine my attention here to the 
world characteristic. (This was considered in some detail also in II.) Then, 
by almost trivial means, a recursive set of  equations for the derivatives 
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dV(')/dso (r = 1, 2 , . . . )  is obtained in Section 2. These are derivatives along 
the unperturbed extremal ~o at any one of  its points. In consequence, the 
need to find the perturbations of the extremals no longer arises. A situation 
o f  particular interest and simplicity is that of  the flat unperturbed metric, 
for then the form of  V (~ and the corresponding geodesics are immediately 
at hand, as briefly set out for later convenience in Section 3. Finally, in 
Section 4, a specific metric which already occurs in Section 5 of II is again 
Used for illustrative purposes. 

2. THE EQUATIONS FOR dVtr)/dso (r = O, 1, 2 , . . . )  

The Hamil ton-Jacobi  equations satisfied by the world-characteristic 
V(x  '1, x '2, x '3, x'4; x l, x 2, x 3, x 4) are, at the initial point P 

gUV, V d = 1 (2.1) 

and, at the final point P' ,  

g'~V.,V. = 1 ( 2 . 2 )  , i  , j '  

where subscripts i and i' following a comma denote derivatives with respect 
to x i and x 'i, respectively, as usual. [Note that as regards primed variables 
the notation differs from that of  Synge (1960).] The perturbation of  the 
metric is most conveniently represented by the equation 

oo 
"" ~ ,  s - / j  r _ e g(s), (2.3) 

s = O  

the bars indicating that one is concerned with general points, i.e., not merely 
with P. The parameter e is supposed to be so small in absolute value that 
the series on the right of  (2.3) converges. Likewise, it is to be taken for 
granted that the concomitant series for V, i.e., 

V =  ~ e s v  (S) (2.4) 
S = 0  

converges. 
Now insert (2.3) and (2.4) in (2.2), but suppose the final point to be 

notionally not necessarily P',  but any point t3 on ~o. Then, if e be regarded 
as freely variable, the factor multiplying e r in the resulting equation must 
vanish for all values of  r -  1, so that one has 

(r>-l) (2.5) 
a = 0  b = 0  
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-i  (Here ~' of course stands for V with x"  replaced by x ,  i = 1 , . . , ,  4, and 
the derivatives are with respect to s s Next, separate out the terms that 
have a = b = 0: 

" "-' r.~ O(,-a)Q(~)+ ~ ~ r (2.6) gg ~(o),, ~};)+ E 5 ( o ) - :  .j 
a=l  a=l b=l 

NOW, 

so that, along go, 

gO V(o)_ d~J/dso (o) , i  --  

dV (r), dso= ~rl~) dx~/ dso = s(o)r'~J -,~O(~ 0(o),.~ (2.7) 

Therefore, from (2.6), after integration, 

fpP,' { :~=11 . . . .  - } IT(r)= 1 ~.o ~r(r--a)~..r(a).{_ ~ ~ g~Jb)v!r-a)vl;  b) dso (2.8) 
- - 2  5(0) ,i 'J a=l b=l 

This is the equation from which V <1), V(2),. . . ,  may be found in turn. For 
later use it is convenient to write (2.8) out in full for r = 1, 2, 3: 

VO) !.;o I7(o) I7(o) dso (2.9) = -- 25(1) ,I ,3 

V (2) fl~O O(~)O(~)-r.~J O(o)o(~)~_~ao O(o)o(O)lds ~ (2.10) = - -  t~(O)  V,i v,j ,  ~,]~(1)r v , j  ~ ( 2 )  v, i  v , j  j 

V(3) f s,r,q I70)~(2)+,;0 :0(o)0(2).a..!~(l) -(1) = -  V,j ) I.,~(O) ,i ,j ~(1)~.v,i r  - - 2 v ,  i 

+~q ~(o)~(1).1,;0 0(o)0(o)l S ( 2 ) ' , i  v , j  - - 2 S ( 3 ) ' , I  v , j  J dso (2.11) 

3 .  F L A T  U N P E R T U R B E D  M E T R I C  

A situation of particular interest is that in which the unperturbed metric 
is that of a fiat space, so that, with an appropriate choice of coordinates, 
g(o)~ = ~7,J' := diag(1, 1, 1, -1).  In this case V (~ is simply the four-dimensional 
distance l between P and P', i.e., 

v<O) = l:= (r/o~:,r ~/2 (3.1) 

where ~:i := x " - x / .  Moreover, on go points P, with coordinates ~ ,  may be 
parametrized as follows: 

.~i Ar xi  (3.2) 
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(~  := x ~-x~), the range of  A being (0, 1), Evidently the distance between P 
and /5  is l =  AI, and dso = IdA. Also, 

i7"(o)=,, i -~ :  (3.3) 

with the convention that indices are moved exclusively with the unperturbed 
metric. Thus, to lowest order, 

Io' V (~)= -�89 ~ )  dA (3.4) 

When, at least to this order, slSaCetime is conformally flat, i.e., there exists 
a scalar function ~b such that 

g(1) = ~7'J~b (3.5) 

then 

fo 
V (')= -�89 4~dA (3.6) 

4. EXPLICIT EXAMPLE 

The relative simplicity of the present approach may be illustrated by 
reconsidering the example chosen in Section 5 of II, namely, 

gij : (1 + ex1) 21"//j (4.1) 

Evidently the x 1 coordinate occupies a privileged position, and the 
ubiquitous appearance of the index 1 is a nuisance. It may therefore simply 
be omitted whenever this is not likely to lead to confusion; e.g., x := x I, 
~ * ' =  E 1. Then 

- i j  . . . . . .  - "" g(~) = 2~/~, g~�89 = r/Vx 2 , g~) = 0 ( r > 2 )  (4.2) 

Now, with ~ = 22 = 2A~: + 2x, (3.6) immediately gives 

V ~) = -�89 x)  (4.3) 

Next, one has ~(1) = _�89 r(~ + x), whence 

~(1) = _1{/-1 (A~ + 2x) ~:i + A/8~} (4.4) ,! 

since, after differentiation with respect to ~;, equation (3.2) and its concomi- 
tants may be used. With (3.3), (4.2), and (4.4), the integrand, I2, say, of 
the integral on the right of (2.10) becomes 

12 = -~(9~2A 2 + 16~:xA + 8x 2 - 12A 2) (4.5) 
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Then 

o r  

V (2)= --1 12 dA =~l(3~2+8~x+8x2-�89 (4.6) 

V (2) = ~l[ (3x '2 + 2x'x  + 3x 2) - 112] (.4.7) 

a result in harmony with equation (11.41); but even in this low order it has 
emerged considerably more easily than it did in II. By the same token, 
progression to the third order is now quite straightforward. Thus, V ~2) 
follows from (4.7) by replacing x' by ~ and l by l, as usual; and then 

(:(Z)=l{l- l(3A2~2+8Ax~+8x2-A212)+2M(3A~+4x)61i} (4.8) ,i 

on eo. In view of (3.3), (4.4), (4.8), and (4.2), everything in the integrand, 
13, say, of  the integral in (2.10) is now known explicitly. Substituting these 
expressions in 13, a little elementary algebra shows that explicitly 

-I3 =~{(lOAa~3-1-27A2~2x+24A~x2d-8x 3) - A212(2A~ + 3x)} (4.9) 

Therefore 

V<3)= - I  /3 dX =-~l{(~3+9~2x+12~x2+8x3)-12( �89  (4.10) 

which may also be written 

V ~3) = ~ l ( x '  + x)  [ 12 - (5x'2 _ 2x'x  + 5x 2) ] (4.11) 

This result is in harmony with the known closed form (11.43) of  V. 
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